12197 measured reflections

 $R_{\rm int} = 0.045$

3158 independent reflections

1882 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[(2-Furylmethyl)sulfanyl]-1*H*-3,1benzimidazol-3-ium chloride dihydrate

Sema Öztürk Yıldırım,^a Mehmet Akkurt,^a* Nihat Şireci,^b Hasan Küçükbay^b and Canan Kazak^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 2 April 2007; accepted 4 April 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.093; data-to-parameter ratio = 16.7.

The title compound, $C_{12}H_{11}N_2OS^+ \cdot Cl^- \cdot 2H_2O$, was synthesized from the potassium salt of 2-mercaptobenzimidazole and 2chloromethylfuran in ethanol. The molecule is not planar; the dihedral angle between the benzimidazole and furan ring systems is 83.2 (1)°. Cations, anions, and water molecules are extensively connected by hydrogen bonds.

Related literature

The crystal structures of some related benzimidazole derivatives have previously reported (Akkurt *et al.*, 2004; Akkurt *et al.*, 2005; Akkurt, Türktekin *et al.*, 2006; Akkurt, Yıldırım *et al.*, 2006; Yıldırım *et al.*, 2005).

Experimental

Crystal data

 $\begin{array}{l} C_{12}H_{11}N_2OS^+ \cdot CI^- \cdot 2H_2O\\ M_r = 302.78\\ Monoclinic, P2_1/c\\ a = 7.0649 \ (6) \ \AA\\ b = 21.5994 \ (17) \ \AA\\ c = 9.5520 \ (7) \ \AA\\ \beta = 97.925 \ (6)^\circ \end{array}$

 $V = 1443.7 (2) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.41 \text{ mm}^{-1}$ T = 296 K $0.51 \times 0.42 \times 0.32 \text{ mm}$ Data collection

Stoe IPDS-2 diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.817, T_{max} = 0.879$

Refinement

Table 1

$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of
$wR(F^2) = 0.093$	independent and constrained
S = 0.84	refinement
3158 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
189 parameters	$\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$

Table I			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O3^{i}$	0.86	1.88	2.738 (2)	177
$N2 - H2A \cdots Cl1$	0.86	2.29	3.1032 (17)	159
$O2-H21\cdots Cl1^{ii}$	0.93 (4)	2.25 (4)	3.178 (2)	177 (4)
$O2-H22\cdots O3^{iii}$	0.77 (4)	2.11 (4)	2.850 (3)	162 (4)
O3−H31···Cl1	0.83 (3)	2.33 (3)	3.145 (2)	170 (3)
O3−H32···O2	0.93 (4)	1.87 (5)	2.763 (3)	160 (4)
$C12 - H12 \cdots Cl1^{iv}$	0.93	2.82	3.673 (3)	152
Symmetry codes: (i)	x, y, z - 1:	(ii) $x - 1, y$.	$z:$ (iii) $-x_{1} - y_{2}$	-z + 2; (iv)

Symmetry codes: (i) x, y, z - 1; (ii) x - 1, y, z; (iii) -x, -y, -z + 2; (iv) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare *et al.*, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-2 diffractometer (purchased under grant F.279 of the University Research Fund). HK and NŞ also thank İnönü University Scientific Research Unit (BAPB-2006–28) for financial support for this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2335).

References

- Akkurt, M., Öztürk, S., Şireci, N., Küçükbay, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, 01185–01187.
- Akkurt, M., Türktekin, S., Şireci, N., Küçükbay, H. & Büyükgüngör, O. (2006). Acta Cryst. E62, 0185–0187.
- Akkurt, M., Yıldırım, S. Ö., Küçükbay, H., Sireci, N. & Fun, H.-K. (2006). Acta Cryst. (2006). E62, 0922–0924.
- Akkurt, M., Yıldırım, S. O., Orhan, E., Küçükbay, H. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2804–o2805.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Yıldırım, S. O., Akkurt, M., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2038–o2039.

supplementary materials

Acta Cryst. (2007). E63, o2433 [doi:10.1107/S160053680701673X]

2-[(2-Furylmethyl)sulfanyl]-1H-3,1-benzimidazol-3-ium chloride dihydrate

S. Ö. Yildirim, M. Akkurt, N. Sireci, H. Küçükbay and C. Kazak

Comment

In the molecule of (I) (Fig. 1), the C—N bond lengths (Table 1) in the benzimidazole ring system confirm the delocalization of the π electrons in this system. The title molecule is composed of a five-membered ring and a nine-membered bicyclic system linked by a thio and methylene group. The nine-membered benzimidazole ring and the five-membered furan ring (Fig. 1) are planar. The molecule, on the other hand, is not planar; the dihedral angle between the two ring systems is 83.2 (1)°. Geometric parameters are as expected (Table 1) and agree well with those reported for other structures (Akkurt *et al.*, 2004; Akkurt *et al.*, 2005; Akkurt, Türktekin *et al.*, 2006; Akkurt, Yıldırım *et al.*, 2006; Yıldırım *et al.*, 2005).

In the crystal structure, there are N—H···O, N—H···Cl, O—H···Cl, O—H···O and C—H···Cl intra- and intermolecular hydrogen bonds (Table 2) (Fig. 2).

Experimental

A mixture of potassium salt of 2-mercaptobenzimidazole (1.0 g; 5.3 mmol) and 2-chloromethylfuran (0.65 g; 5.3 mmol) in ethanol (25 ml) was heated under reflux for 5 h. The mixture was cooled to room temperature and potassium chloride was then filtered off and washed a little EtOH. All volatiles were removed *in vacuo* (0.02 m mH g; 1 m mH g = 133.322 Pa) and HCl was added to convertsalt form before crystallization of crude product from EtOH. (yield:1.2 g, 75%;m.p. 424–425 (dec)K. ¹H-NMR (DMSO-d₆, p.p.m.): 4.96 (*s*, –S—CH₂–, 2H),6.36 (*t*, furan-H, 1H), 6.50 (*d*, furan-H,1*H*),7.44 (*t*, Ar—H, 2H), 7.48 (s, –NH–, 1H), 7.67 (s, =NH–, 1H), 7.71 (*m*, Ar—H, 2H). ¹³C-NMR (CDCl₃): δ 29.89, 107.30, 110.07, 113.77, 114.90, 125.59, 126.55, 130.86, 133.37, 144.16, 149.25. Analytical calculated for C₁₂H₁₅N₂SO₃Cl: C 47.60, H 4.95, N 9.25, S 10.57%. Found: C 47.25, H 4.95, N 9.06, S 11.07%.

Refinement

The H atoms of the water molecules were found from a difference Fourier map and refined freely. The other H atoms were geometrically positioned with $C_{aromatic}$ -H = 0.93 $C_{methylene}$ -H = 0.97Å and N-H = 0.86Å, and with U_{iso} (H) = 1.2 U_{eq} (C,N).

Figures

Fig. 1. An *ORTEP-3* view of (I), with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2. A view of the crystal packing of (I), looking down the *a* axis; H atoms not involved in hydrogen bonds omitted; dashed lines indicate hydrogen contacts.

2-[(2-furylmethyl)sulfanyl]-1H-3,1-benzimidazol-3-ium chloride dihydrate

Crystal data

$C_{12}H_{11}N_2OS^+ \cdot Cl^- \cdot 2H_2O$	$F_{000} = 632$
$M_r = 302.78$	$D_{\rm x} = 1.393 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 12416 reflections
a = 7.0649 (6) Å	$\theta = 1.9-27.1^{\circ}$
<i>b</i> = 21.5994 (17) Å	$\mu = 0.41 \text{ mm}^{-1}$
c = 9.5520 (7) Å	T = 296 K
$\beta = 97.925 \ (6)^{\circ}$	Prism, colourless
$V = 1443.7 (2) \text{ Å}^3$	$0.51\times0.42\times0.32~mm$
Z = 4	

Data collection

Stoe IPDS2 diffractometer	3158 independent reflections
Monochromator: plane graphite	1882 reflections with $I > 2\sigma(I)$
Detector resolution: 6.67 pixels mm ⁻¹	$R_{\rm int} = 0.045$
T = 296 K	$\theta_{\text{max}} = 27.1^{\circ}$
ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)	$h = -9 \rightarrow 9$
$T_{\min} = 0.817, \ T_{\max} = 0.879$	$k = -27 \rightarrow 27$
12197 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0559P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.036$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.093$	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 0.84	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$
3158 reflections	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
189 parameters	Extinction coefficient: 0.0078 (13)

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2$ sigma(F^2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.28109 (10)	0.18243 (3)	0.44205 (7)	0.0676 (2)
01	-0.0559 (2)	0.26590 (7)	0.57648 (17)	0.0666 (6)
N1	0.2396 (2)	0.05992 (7)	0.41089 (17)	0.0508 (6)
N2	0.3027 (2)	0.08569 (7)	0.63196 (17)	0.0499 (5)
C1	0.2474 (3)	0.00497 (9)	0.4873 (2)	0.0463 (6)
C2	0.2215 (3)	-0.05649 (10)	0.4465 (2)	0.0563 (8)
C3	0.2386 (3)	-0.09954 (10)	0.5533 (3)	0.0616 (8)
C4	0.2792 (3)	-0.08243 (10)	0.6947 (2)	0.0649 (9)
C5	0.3050 (3)	-0.02185 (10)	0.7354 (2)	0.0578 (8)
C6	0.2875 (3)	0.02143 (9)	0.6287 (2)	0.0455 (6)
C7	0.2740 (3)	0.10729 (9)	0.4996 (2)	0.0494 (7)
C8	0.2646 (3)	0.22625 (9)	0.6037 (2)	0.0573 (8)
C9	0.0741 (3)	0.22686 (8)	0.6481 (2)	0.0480 (6)
C10	-0.0055 (3)	0.19611 (10)	0.7456 (2)	0.0545 (7)
C11	-0.1959 (3)	0.21770 (11)	0.7380 (2)	0.0630 (8)
C12	-0.2199 (3)	0.25924 (11)	0.6361 (3)	0.0681 (9)
O2	-0.1594 (3)	0.06471 (12)	0.9334 (2)	0.0775 (8)
O3	0.1745 (3)	0.06500 (8)	1.12185 (18)	0.0678 (6)
Cl1	0.44294 (7)	0.13331 (2)	0.93504 (6)	0.0562 (2)
H1	0.21620	0.06280	0.32040	0.0610*
H2	0.19410	-0.06790	0.35200	0.0680*
H2A	0.32680	0.10790	0.70700	0.0600*
Н3	0.22270	-0.14130	0.53050	0.0740*
H4	0.28910	-0.11310	0.76370	0.0780*
Н5	0.33270	-0.01060	0.83000	0.0690*
H8A	0.35430	0.20890	0.67950	0.0690*
H8B	0.30330	0.26860	0.58960	0.0690*
H10	0.05280	0.16620	0.80700	0.0650*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H11	-0.28650	0.20500	0.79400	0.0760*
H12	-0.33250	0.28100	0.60870	0.0820*
H21	-0.274 (6)	0.0857 (18)	0.937 (4)	0.152 (15)*
H22	-0.182 (6)	0.0299 (19)	0.929 (4)	0.138 (18)*
H31	0.252 (4)	0.0849 (12)	1.082 (3)	0.084 (9)*
H32	0.055 (6)	0.073 (2)	1.070 (5)	0.176 (18)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S1	0.0905 (5)	0.0574 (3)	0.0611 (4)	0.0132 (3)	0.0330 (3)	0.0147 (3)
01	0.0700 (10)	0.0607 (9)	0.0695 (11)	0.0096 (8)	0.0112 (8)	0.0167 (8)
N1	0.0570 (10)	0.0601 (10)	0.0360 (9)	0.0062 (8)	0.0094 (7)	0.0019 (8)
N2	0.0623 (10)	0.0496 (9)	0.0387 (9)	0.0012 (8)	0.0104 (8)	-0.0020 (7)
C1	0.0454 (10)	0.0544 (11)	0.0401 (11)	0.0048 (9)	0.0090 (8)	0.0007 (9)
C2	0.0559 (13)	0.0628 (13)	0.0508 (13)	-0.0004 (10)	0.0091 (10)	-0.0120 (10)
C3	0.0666 (14)	0.0517 (12)	0.0667 (16)	-0.0010 (10)	0.0103 (11)	-0.0067 (11)
C4	0.0845 (17)	0.0529 (12)	0.0575 (15)	0.0010 (11)	0.0107 (12)	0.0077 (11)
C5	0.0730 (15)	0.0573 (12)	0.0430 (12)	0.0007 (10)	0.0081 (10)	0.0039 (9)
C6	0.0488 (11)	0.0464 (10)	0.0421 (11)	0.0023 (8)	0.0092 (8)	-0.0008 (8)
C7	0.0515 (12)	0.0556 (11)	0.0430 (12)	0.0068 (9)	0.0137 (9)	0.0049 (9)
C8	0.0591 (13)	0.0468 (11)	0.0677 (15)	-0.0030 (9)	0.0152 (11)	0.0052 (10)
C9	0.0534 (11)	0.0415 (10)	0.0487 (12)	0.0012 (9)	0.0053 (9)	-0.0025 (9)
C10	0.0541 (12)	0.0555 (12)	0.0535 (13)	0.0005 (9)	0.0057 (10)	0.0112 (10)
C11	0.0580 (13)	0.0800 (16)	0.0527 (13)	-0.0050 (12)	0.0136 (10)	0.0011 (12)
C12	0.0545 (14)	0.0699 (14)	0.0804 (18)	0.0128 (11)	0.0107 (12)	-0.0016 (13)
O2	0.0754 (13)	0.0817 (14)	0.0744 (13)	0.0137 (11)	0.0066 (9)	0.0059 (10)
O3	0.0687 (11)	0.0866 (12)	0.0487 (10)	-0.0051 (9)	0.0100 (8)	0.0097 (8)
Cl1	0.0560 (3)	0.0628 (3)	0.0493 (3)	-0.0030 (2)	0.0055 (2)	-0.0033 (2)

Geometric parameters (Å, °)

S1—C7	1.717 (2)	C3—C4	1.392 (3)
S1—C8	1.828 (2)	C4—C5	1.370 (3)
O1—C9	1.360 (2)	C5—C6	1.376 (3)
O1—C12	1.367 (3)	C8—C9	1.466 (3)
O2—H21	0.93 (4)	C9—C10	1.330 (3)
O2—H22	0.77 (4)	C10-C11	1.416 (3)
O3—H31	0.83 (3)	C11—C12	1.318 (3)
O3—H32	0.93 (4)	С2—Н2	0.9300
N1—C7	1.329 (2)	С3—Н3	0.9300
N1—C1	1.391 (2)	C4—H4	0.9300
N2—C6	1.392 (2)	С5—Н5	0.9300
N2—C7	1.337 (2)	C8—H8A	0.9700
N1—H1	0.8600	C8—H8B	0.9700
N2—H2A	0.8600	С10—Н10	0.9300
C1—C6	1.388 (3)	C11—H11	0.9300
C1—C2	1.389 (3)	С12—Н12	0.9300
C2—C3	1.373 (3)		

Cl1…N2	3.1032 (17)	C10…H3 ^{viii}	3.1000
Cl1…O2 ⁱ	3.178 (2)	C10…H2A	3.0800
Cl1···O3	3.145 (2)	C11···H3 ^{viii}	3.0300
Cl1…H11 ⁱ	2.9300	C12···H3 ^{viii}	3.0000
Cl1…H2A	2.2900	C12···H4 ^{xi}	2.9800
Cl1…H8A	2.9300	H1…O3 ^{ix}	1.8800
Cl1…H10	2.9400	H1···H31 ^{ix}	2.3700
Cl1…H8B ⁱⁱ	2.8400	H1···H32 ^{ix}	2.5100
Cl1…H21 ⁱ	2.25 (4)	H2…O2 ^{viii}	2.7000
Cl1…H31	2.33 (3)	H2A…Cl1	2.2900
Cl1…H12 ⁱⁱⁱ	2.8200	Н2А…Н8А	2.2100
S1…O1	3.3780 (17)	H2A…H10	2.6000
S1···C9 ^{iv}	3.568 (2)	H2A···C8	2.7500
S1C10 ^{iv}	3.668 (2)	H2A…C10	3.0800
O1···C10 ^{iv}	3.332 (3)	H3…C10 ^{viii}	3.1000
O1…S1	3.3780 (17)	H3···C12 ^{viii}	3.0000
O1····C11 ^{iv}	3.267 (3)	H3···C11 ^{viii}	3.0300
O2···Cl1 ^v	3.178 (2)	H4…H12 ^{xii}	2.5900
O2…O3 ^{vi}	2.850 (3)	H4···C12 ^{xii}	2.9800
02…03	2.763 (3)	H8A…N2	2.7200
O3····O2 ^{vi}	2.850 (3)	H8A…Cl1	2.9300
O3…Cl1	3.145 (2)	H8A…H2A	2.2100
O3…N1 ^{vii}	2.738 (2)	H8B…H12 ⁱ	2.5700
O3…O2	2.763 (3)	H8B…Cl1 ^{iv}	2.8400
O2…H32	1.87 (5)	H10…Cl1	2.9400
O2…H2 ^{viii}	2.7000	H10…H2A	2.6000
O3…H22 ^{vi}	2.11 (4)	H11···Cl1 ^v	2.9300
O3…H1 ^{vii}	1.8800	H12…C8 ^v	3.0800
N1···O3 ^{ix}	2.738 (2)	H12…Cl1 ^{xiii}	2.8200
N1…N2	2.170 (2)	H12···H8B ^v	2.5700
N2…N1	2.170 (2)	H12…H4 ^{xi}	2.5900
N2…C11	3.1032 (17)	H21…H32	2.51 (6)
N2…H8A	2.7200	H21···Cl1 ^v	2.25 (4)
C1···C1 ^x	3.550 (3)	H22···O3 ^{vi}	2.11 (4)
C1···C1 ^{viii}	3.544 (3)	H22···H32 ^{vi}	2.40 (6)
C3…C7 ^x	3.553 (3)	H22···H31 ^{vi}	2.53 (5)
C3····C7 ^{viii}	3.591 (3)	H22…H32	2.21 (6)
C7···C3 ^{viii}	3.591 (3)	H31…H22 ^{vi}	2.53 (5)
C7…C3 ^x	3.553 (3)	H31…Cl1	2.33 (3)
C9…S1 ⁱⁱ	3.568 (2)	H31…H1 ^{vii}	2.3700
C10…O1 ⁱⁱ	3.332 (3)	H32…H1 ^{vii}	2.5100

supplementary materials

C10…S1 ⁱⁱ	3.668 (2)	H32…H21	2.51 (6)
C11…O1 ⁱⁱ	3.267 (3)	H32…H22	2.21 (6)
C8…H12 ⁱ	3.0800	H32…H22 ^{vi}	2.40 (6)
C8···H2A	2.7500	H32…O2	1.87 (5)
C7—S1—C8	102.18 (9)	Q1—C9—C10	109.90 (19)
C9—O1—C12	106.11 (17)	01	116.32 (16)
H21—O2—H22	108 (4)	C9—C10—C11	106.86 (18)
H31—O3—H32	106 (3)	C10-C11-C12	106.66 (19)
C1—N1—C7	109.38 (16)	O1—C12—C11	110.4 (2)
C6—N2—C7	109.01 (16)	C1—C2—H2	122.00
C7—N1—H1	125.00	С3—С2—Н2	122.00
C1—N1—H1	125.00	С4—С3—Н3	119.00
C7—N2—H2A	125.00	С2—С3—Н3	119.00
C6—N2—H2A	126.00	С5—С4—Н4	119.00
C2—C1—C6	121.30 (18)	C3—C4—H4	119.00
N1—C1—C2	132.42 (18)	С6—С5—Н5	122.00
N1—C1—C6	106.27 (16)	С4—С5—Н5	122.00
C1—C2—C3	116.37 (19)	S1—C8—H8A	109.00
C2—C3—C4	121.8 (2)	С9—С8—Н8В	109.00
C3—C4—C5	122.05 (19)	S1—C8—H8B	109.00
C4—C5—C6	116.35 (18)	С9—С8—Н8А	109.00
C1—C6—C5	122.17 (18)	H8A—C8—H8B	107.00
N2—C6—C5	131.46 (18)	C11—C10—H10	127.00
N2—C6—C1	106.38 (16)	С9—С10—Н10	127.00
S1—C7—N1	122.31 (15)	C10-C11-H11	127.00
S1—C7—N2	128.73 (15)	C12-C11-H11	127.00
N1—C7—N2	108.96 (17)	C11—C12—H12	125.00
S1—C8—C9	114.64 (14)	O1—C12—H12	125.00
C8—C9—C10	133.77 (19)		
C8—S1—C7—N1	164.63 (17)	C2—C1—C6—N2	-179.44 (19)
C8—S1—C7—N2	-16.5 (2)	C2—C1—C6—C5	0.5 (3)
C7—S1—C8—C9	-74.29 (16)	N1—C1—C2—C3	-179.4 (2)
C12—O1—C9—C8	-179.37 (18)	N1—C1—C6—C5	179.77 (19)
C9—O1—C12—C11	-0.9 (3)	C1—C2—C3—C4	0.2 (3)
C12—O1—C9—C10	1.4 (2)	C2—C3—C4—C5	-0.2 (3)
C1—N1—C7—N2	-0.5 (2)	C3—C4—C5—C6	0.4 (3)
C7—N1—C1—C6	0.4 (2)	C4—C5—C6—C1	-0.5 (3)
C7—N1—C1—C2	179.6 (2)	C4—C5—C6—N2	179.4 (2)
C1—N1—C7—S1	178.54 (15)	S1—C8—C9—O1	-77.85 (19)
C6—N2—C7—S1	-178.54 (17)	S1—C8—C9—C10	101.1 (2)
C6—N2—C7—N1	0.4 (2)	O1—C9—C10—C11	-1.3 (2)
C7—N2—C6—C5	179.9 (2)	C8—C9—C10—C11	179.6 (2)
C7—N2—C6—C1	-0.2 (2)	C9—C10—C11—C12	0.7 (3)
N1—C1—C6—N2	-0.1 (2)	C10-C11-C12-O1	0.1 (3)
C6—C1—C2—C3	-0.3 (3)		

Symmetry codes: (i) x+1, y, z; (ii) x, -y+1/2, z+1/2; (iii) x+1, -y+1/2, z+1/2; (iv) x, -y+1/2, z-1/2; (v) x-1, y, z; (vi) -x, -y, -z+2; (vii) x, y, z+1; (viii) -x, -y, -z+1; (ix) x, y, z-1; (x) -x+1, -y, -z+1; (xi) -x, y+1/2, -z+3/2; (xii) -x, y-1/2, -z+3/2; (xiii) x-1, -y+1/2, z-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1···O3 ^{ix}	0.86	1.88	2.738 (2)	177
N2—H2A…Cl1	0.86	2.29	3.1032 (17)	159
$O2$ — $H21$ ··· $Cl1^{v}$	0.93 (4)	2.25 (4)	3.178 (2)	177 (4)
O2—H22···O3 ^{vi}	0.77 (4)	2.11 (4)	2.850 (3)	162 (4)
O3—H31…Cl1	0.83 (3)	2.33 (3)	3.145 (2)	170 (3)
O3—H32···O2	0.93 (4)	1.87 (5)	2.763 (3)	160 (4)
C12—H12···Cl1 ^{xiii}	0.93	2.82	3.673 (3)	152

Symmetry codes: (ix) x, y, z-1; (v) x-1, y, z; (vi) -x, -y, -z+2; (xiii) x-1, -y+1/2, z-1/2.

